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Numerical investigations, supported by partial rigorous results suggest that the
motion of a tagged particle of massM on the line R1 colliding with a free gas of
particles of mass m in equilibrium is diffusive. It was conjectured that the diffu-
sion constant D(M), for small mass MQ 0, should approach D(m). (In dimen-
sion 1 this is a kind of ‘‘continuity hypothesis.’’) Previous results of computer
simulations are inconclusive. We report on some new computer results, which
show clearly that there is no continuity, and the limit of D(M) as MQ 0 is
smaller than D(m). We compare with the corresponding results for a similar two-
dimensional model, to which the ‘‘continuity argument’’ cannot be applied.
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1. INTRODUCTION

The Rayleigh gas, i.e., the motion of a singled-out particle in a gas, is the
standard model for investigating the appearance of Brownian motion in
deterministic mechanical systems. Due to the well known difficulties in
controlling the evolution of infinitely many interacting particles, rigorous
investigations are restricted to the case when the interaction is ‘‘localized’’
around the Rayleigh particle (‘‘R.p.’’ for short), i.e., the particles of the
gas interact only with the R.p., by elastic collisions or by a short-range
interaction. The main idea underlying possible rigorous proofs is that, if
the effect of the interaction on the distribution of the surrounding gas can



be in some sense neglected, the displacement of the R.p. can be approxi-
mately considered as a sum of increments due to independent ‘‘collisions,’’
so that, in the appropriate scaling, it will tend to the Brownian limit.
A few years ago several authors (1–4) devoted their attention to the

Rayleigh gas, and some rigorous results were obtained for models with
additional scalings, (3, 4) such as letting the mass of the R.p. grow with time,
so that the effect of possible recollisions (which carry a long-time memory)
becomes negligible. In absence of additional scalings complete results could
be obtained only for the equal mass one-dimensional case (5, 6) and for a
particular model for which the ‘‘R.p.’’ (in this case actually a rod), tied
to a straight line, moves under the action of collisions with a gas in the
plane R2. (7, 8) Some significant progress was however made for the one-
dimensional gas with the mass M of the R.p. different from the common
mass m of the other particles, (1) but the difficulty of estimating the con-
tribution of the tail recollisions did not allow a complete proof of the
Brownian limit.
In order to shed more light on the behavior of such systems some

authors resorted to computer experiments, (9–11) and a first hint that the
behavior for M ] m was not diffusive (Gaussian) (9) was contradicted by
more accurate simulations, (11) so that by now the displacement of the R.p.
can be assumed to be diffusive for all mass ratios. Computer simulations
also showed that the dispersion changes in a peculiar way as the mass
ratio Mm varies, reaching a global maximum for M=m, which, as we have
rigorous proofs for the equal mass case, is explicitely known (Dg=`2

p). In
ref. 2 one can find a proof that this is an upper bound for all mass ratios,
the lower bound being Dg=`

p

8 . The computer data show that, as the ratio
M
m moves away from 1, there is a clear fall-off of the dispersion on both
sides, which for large ratios may go all the way to the lower bound Dg as
M
m Q.. In the region 0 < Mm < 1 the results of the first simulations

(9) seemed
to show that the dispersion, starting from values near Dg for Mm=1, falls
off, as Mm decreases, to a local minimum, to go up again as

M
m Q 0. It was

natural to assume that the limiting value of the dispersion at Mm=0 is D
g, so

that one would have continuity of the dispersion at M=0, as the system
withM=0 clearly behaves in the same way as for equal massesM=m.
The error bars in ref. 9 were however too large to allow definite con-

clusions on the behavior at low values of Mm . The corresponding picture in
ref. 11, which has a better statistics, does not seem to be very much in
agreement with the continuity hypothesis, but here again the data in the
low-mass region are not enough to allow reliable conclusions. We are not
aware of further results on this problem.
The aim of the present paper is to report some new computer simula-

tions with more data in the region of low mass ratios and much larger
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statistical samples than in ref. 11. The results presented here clearly indicate
that there is no increase of the dispersion as Mm Q 0, and indeed the disper-
sion seems to decrease all the way as Mm Q 0. Hence there is no continuity of
the dispersion at Mm=0. We also report for comparison the corresponding
results for the two-dimensional model considered in refs. 7 and 8, which is
made of an infinitely thin rod, of mass M and length a, which moves with
its center on the x axis keeping an orthogonal position with respect to it,
and interacts by elastic collisions with a free gas of particles of common
mass m. The model is essentially one-dimensional, as the y-components
of velocities are preserved. The additional dimension plays however an
important role in the proofs, providing a rapid fall off of the memory, as
the free gas particles move out of the interaction region in a finite time.
Our results show that for this model the dispersion as a function of the

mass ratio behaves near the origin in the same way, i.e., it has a local
minimum.
One can maybe argue that long memory effects, which are absent in

the second model, do not affect the behavior of the dispersion in the
neighborhood of Mm=0.

2. DESCRIPTION OF THE MODELS AND OF THE COMPUTER

SIMULATION

The main model that we consider is a one-dimensional particle system
made of a particle of mass M (‘‘Rayleigh particle,’’ or ‘‘R.p.’’) and infini-
tely many particles of common mass m. Particles move freely except at the
moments of collision, when they change velocity according to the laws of
elastic collision. Namely the particles of equal mass m simply exchange
velocities, whereas when the R.p., with velocity V, and a particle of mass m,
with velocity v, collide they take, respectively, the outgoing velocities

˛V −=aV+(1−a) v
v −=(1+a) V−av

(1)

where a=m−M
m+M .

Let W be the phase space of the system as seen from the R.p., with
points w=(V, Y) where V is the velocity of the R.p. and Y is a discrete
subset of R2, giving positions and velocities of the other particles. Y has the
property of being ‘‘locally finite,’’ i.e., for any bounded measurable L … R1

the set Y 5 (L×R1) is finite. The time dynamics described above induces
an evolution T t on some regular subset W − … W.
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For any inverse temperature b there is a unique Gibbs equilibrium
state for the ‘‘system as seen from the R.p.,’’ which, if r > 0 is the particle
density, is a measure on W written as

m(dw)==Mb
2p
e−b

MV2

2 dV Pr, b(dY) (2)

where Pr, b is the Poisson measure on R2 with intensity

rdq=mb
2p
e−b

mv2

2 dv (3)

As m(W −)=1 for all choices of b, r (see ref. 1) there is no problem with the
dynamics. The position of the particle at time t, assuming that it is located
at the origin at the initial time t=0, is given in terms of the dynamics on W
by the explicit formula

Q(t; w)=F
t

0
V(Tyw) dy (4)

In computer simulations we take the values r=1, b=1 and m=1, as
no significant dependence on such parameters is expected. As discussed in
ref. 11, the simulation of the system requires the generation of Gaussian
random variables (for the velocities) and of exponential random variables
for the interparticle distances.
In carrying out the computation one has to follow a trajectory for long

times, since by stopping the procedure and starting again one would
introduce additional external randomness. The difficulty is of course that
of keeping track of an increasing number of particles and of possible fast
particles that come from far away. As in ref. 11 we introduce a ‘‘barrier,’’
located at ±L where L > 0 is chosen in dependence of the maximal
planned time of each run T, and is so large that the probability that for one
of the runs in the sample the R.p. will ever get across the barrier by time T
is negligible. At the barrier particles that are going to enter the interval
(−L, L) are ‘‘piled up,’’ each of them labeled by its velocity v and entry
time y. The first particle that collides is determined by taking the minimum
of the collision times of the R.p. with all particles in (−L, L) and with the
particles of the barrier. Let yg be such minimum. One should of course be
sure that there is no fast particle that can enter the barrier and collide with
the R.p. before time yg. This is ensured by checking that there are, at the
barrier, particles with entry time larger that yg. If this is not the case we
‘‘fill up’’ the barrier with new particles. Clearly only particles with positive
velocity are considered at −L, and particles with negative velocity at+L.
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The joint distribution of the entry times and the absolute value of the
velocities of the particles at the two points of the barrier is the same and,
since we are dealing with ‘‘fresh particles’’ which have not yet collided, is
independent of the situation at the initial time t=0 in the interval (−L, L)
and is generated by the Poisson distribution Pr, b. Simple computations
show that the joint distribution of the entry time y1 and the absolute value
of the velocity u1=|v1 | of the first particle that enters at one of the points
of the barrier has density

f(y1, u1)=
1

`2p
e−

u
2
1
2 u1 du1 e−

y1
`2p dy1 (5)

(Note that the density is properly normalized: >.0 dy1 >
.

0 du1 f(y1, u1)=

>.0
dy1
`2p
e−

y1
`2p >.0 e−

u
2
1
2 u1 du1=1.)

By the properties of the Poisson distribution, the time differences with
the particles that follow, yj−yj−1, j=0, 1,..., y0=0 and the velocities
uj=|vj | of those particles are i.i.d. with the same distribution as y1, u1.
The procedure for each run is the following. We first generate the

number NL of particles in (−L, L) as an independent realization of a
Poisson random variable with parameter 2L. The particle positions are
then determined as independent realizations of the uniform random vari-
able in (−L, L), and the particle velocities as independent realizations of
the appropriate Gaussian variable. Particles on the barrier are assigned by
a similar procedure. In computing the dispersion the time of each run is
T=10,0000 units, the position of the barriers is fixed with L=400 and the
sample N varies between 1,500 and 3,000.
The second model consists, as we said, of a rod of length a and total

mass M, moving in a plane in such a way that its central point moves on
the x-axis, and its direction is always perpendicular to it. The rod moves
under the action of elastic collisions with a gas of free particles with
common mass m. At collision the y-component of the particle velocity is
preserved, and the x-component changes according to the laws (1) where V,
V − are the velocities of the rod (which are parallel to the x-axis, or
‘‘horizontal’’) before and after collision, and v, v − are the corresponding
horizontal velocities of the gas particle. If V is the velocity of the rod,
(q1, q2) the space coordinates and (v1, v2) the horizontal and vertical velo-
cities, respectively, and W the phase space of the gas as seen from the rod,
the Gibbs equilibrium measure is a measure on W written as

m(dw)==Mb
2p
e−b

MV2

2 dV Pr, b(dY) (6)
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where Pr, b is the Poisson measure on R4 with intensity

r dq1 dq2 =
mb
2p
e−b

mv
2
1
2 dv1 h(dv2) (7)

Here h(dv2) is the vertical velocity distribution, which is arbitrary, as the
vertical velocity is preserved at collision. We take a discrete distribution for
which the vertical velocity takes the four values ± 1

10 and ±
1
5 with equal

probabilities. We set again r=1, m=1, and take a=10.
This model needs of course a two-dimensional barrier, which is the

boundary of the box − a2 [ q2 [
a

2 , −L [ q1 [ L. The time of each run is
T=1,000, the position of the barrier varies between L=200 and L=300,
and the sample N between 500 and 1,000.

3. ANALYSIS OF THE RESULTS

In all plots that follow vertical bars correspond to one standard error
over the sample.

3.1. Brownian Behavior for Model 1

We first made a new check of the Gaussian behavior of the particle
position Q(t) for large t. The easiest check is linearity of the sample dis-
persion OQ2t P with time. (Here and in the following sample averages are
denoted by angle brackets O ·P.) Figure 1 shows typical numerical results.
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Fig. 1. Model 1. Plot of averages of Q2t , forM=2, N=2, 000. The line is the linear best fit.
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Table I. Results for Both the q2 and the K-S Test, Where M Is the Particel Mass,

L the Exit Lenght, N the Sample Size, and k the Degrees of Freedom

M L N q2 q20.95, k k K-S test DN, 0.05

0.02 40 10,000 41.83 42.6 29 0.0081 0.0136
0.5 40 5,000 90.03 100.85 79 0.0086 0.0192
0.5 70 5,000 92.34 102 80 0.0132 0.0192
0.5 100 10,000 72.93 88.2 68 0.0072 0.0136
1 40 5,000 100.84 124 100 0.0144 0.0192
1 70 5,000 68.44 99.7 78 0.0082 0.0192
1 100 5,000 97.73 100.85 79 0.0132 0.0192
2 40 5,000 84.32 99.7 78 0.0165 0.0192
2 70 5,000 55.15 88.22 68 0.0097 0.0192
2 100 5,000 57.68 88.22 68 0.004 0.0192

Following ref. 9 one can argue that a more significant check is perhaps
that of the exit time distribution. For the standard Brownian motion the
distribution of the exit time from the interval [−1, 1] is given, following
ref. 12, by the series

F(t)=1−
4
p

C
.

j=0

(−1) j

2j+1
e−

p2

8 (2j+1)
2 t

We take different values of the length 2L of the interval, with center at the
origin, for which we compute the exit time. The variable is rescaled by a
factor s

2t
L2
. The results for both the q2 and the Kolmogorov–Smirnov test

are reported in Table I. All results are compatible with the Brownian
hypothesis.

3.2. Behavior of Dispersion with the Mass for Model 1

For a better description we report separately the results for different
ranges of the mass ratio. They are given in Figs. 2a–c. The size of the
sample can actually be considered to be 10N, as we consider for each one
of the N runs the increments of the displacement of the particle over time
intervals of 1,000 units. (As a consequence of the Brownian limit such
increments are approximately independent).
Figure 2a shows the behavior around the global maximum at Mm=1.

As in refs. 9 and 11, we have a neat peak at Mm=1.
Figure 2b shows the behavior in the critical region near Mm=0. It

clearly indicates that the dispersion tends to a limiting value as Mm Q 0,
which is around 0.73. The statistics is over a sample of 3,000 runs, except
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Fig. 2. (a) Model 1. Plot of DM vs. M around the global maximum at M=1. (b) Model 1.
Plot of DM vs.M in the critical region nearM=0. (c) Model 1. Plot of DM vs.M forM \ 1.
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for the lowest value M=5·10−4 for which the number of collisions is very
large (and so are computing times) and the sample has been reduced to
1,500 runs. Figure 2c shows the behavior for large mass ratios.

3.3. Behavior of the Dispersion with the Mass for Model 2

For this model there is no reason to expect that as Mm Q 0 the value of
the dispersion should tend to that for equal masses. The Brownian limit for
this model was proved rigorously in ref. 7. As for the other model, we
report separately the low mass behavior and that on the rest of the range.
Figure 3a gives the behavior over the whole range, which, in spite of

the fact that error bars are larger, is clearly very similar to that of the pre-
vious model. And the same applies to the small mass behavior, on which
we are mostly interested, as it is shown in Fig. 3b.
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Fig. 3. (a) Model 2. Plot of DM vs. M around the global maximum at M=1. (b) Model 2.
Plot of DM vs.M for small mass.
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